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Bipolar disorder (BD) is a severe, chronic affective disorder, associated with significant disability, 
morbidity and premature mortality. Omega-3 polyunsaturated fatty acids (PUFAs) play several 
important roles in brain development and functioning. Evidence from animal models of dietary 
omega-3 (n-3) PUFA deficiency suggest that these fatty acids are relevant to promote brain 
development and to regulate behavioral and neurochemical aspects related to mood disorders, 
such as stress responses, depression and aggression, as well as dopaminergic content and 
function. Preclinical and clinical evidence suggests roles for PUFAs in BD. n-3 PUFAs seem to be 
an effective adjunctive treatment for unipolar and bipolar depression, but further large-scale, 
well-controlled trials are needed to examine its clinical utility in BD. The use of n-3 as a mood 
stabilizer among BD patients is discussed here. This article summarizes the molecular pathways 
related to the role of n-3 as a neuroprotective and neurogenic agent, with a specific focus on 
BDNF. It is proposed that the n-3–BDNF association is involved in the pathophysiology of BD 
and represents a promising target for developing a novel class of rationally devised therapies.
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Bipolar disorder (BD) is a chronic, recurrent affective disorder 
characterized by cyclic episodes of mania/hypomania and depres-
sion, interspersed with periods of clinical remission or euthymia. 
BD is a complex syndrome characterized by the dysfunction of 
multiple neurobehavioral domains. Beyond the core dysfunc-
tion in mood regulation, the broad phenotypic expression of BD 
includes anxiety, psychosis, impulsivity, disturbances in cognition 
and circadian rhythm (e.g., sleep–wake cycle), as well as high rates 
of medical and psychiatric comorbidities [1,2]. 

Moreover, BD is a severe condition that is often associated with 
significant disability, morbidity and premature mortality [3,4]. All of 
this seems to be due to cognitive, as well as physical health, deterio-
ration [2,5,6]. Persistent cognitive dysfunctions may predict a poorer 
long-term functional outcome among BD patients [7,8]. In addition, 
BD carries a higher risk for a wide range of medical conditions, 
including cardiovascular disease (CVD), cerebrovascular diseases 
and neurological disorders, such as migraine or epilepsy, as well as 
metabolic abnormalities, such as obesity/overweight and Type 2 
diabetes mellitus [9–11]. These comorbidities frequently compli-
cate the clinical presentation and management of BD and worsen 
treatment response, course, outcome and quality of life [12,13]. 

The omega-3 (n-3 or w-3) and omega-6 (n-6 or w-6) poly-
unsaturated fatty acids are either obtained from the diet or syn-
thesized from the essential fatty acids a-linolenic acid (ALA) 
and linoleic acid (LA), respectively. Fatty acids play different 

physiological roles in the organism, are important in the struc-
ture of cellular membranes and are essential for brain functions 
and nerve impulse transmission  [14]. The main n-3 long-chain 
polyunsaturated fatty acid (LC-PUFA or simply PUFA, hereafter) 
in the neural membrane is docosahexaenoic acid (DHA). DHA is 
necessary for the structure of brain cellular membranes and influ-
ences signaling events that are essential to neuron differentiation 
and survival [15,16]. n-3 PUFAs have been suggested as a treatment 
for clinical depression [17–19]. Recent evidence suggests an involve-
ment of n-3 PUFAs with the BDNF/tyrosine kinase receptor B 
(TrkB) signaling pathway [20,21], which may in part explain some 
of the neuroprotective effects of n-3 in experimental models. 

BDNF is a protein of the neurotrophin family, which is involved 
in neuroprotection, including neuronal survival, dendritic arbo-
rization, synaptic plasticity and neurodevelopment [22]. A grow-
ing body of evidence has suggested that BDNF is involved in 
the pathophysiology of BD [23]. Several agents that have positive 
effects in mood, including antidepressants and mood stabilizers, 
enhance BDNF levels [24–26], whereas acute episodes of BD have 
been associated with a decrease of its serum levels [27]. Therefore, 
it seems that drugs with a BDNF-enhancing capacity may have 
therapeutic effects on BD. 

The BDNF/TrkB signaling pathway is one of the different 
neurobiological mechanisms of action that have been pro-
posed to explain the mood-regulating effects of n-3 PUFAs in 
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BD  [28–30], including the modulation of signal transduction 
pathways, the reduction of proinflammatory cytokines or the 
blockade of calcium channels [31]. 

In this article, we will examine the available evidence of the pos-
sible therapeutic use of n-3 in BD. A possible role via the BDNF 
neuroprotection/neurogenesis system is described. 

Omega-3 long-chain, polyunsaturated fatty acids 
Fatty acids play different physiological roles in the organism, 
are extremely important for the structure of cell membranes and 
metabolic processes, and are essential for brain functions and 
nerve impulse transmission [14]. 

Long-chain polyunsaturated fatty acids include omega-6 (n-6 
or w-6) and omega-3 (n-3 or w-3) families of fatty acids, whose 
precursors are LA and ALA, respectively (Figure 1). Both of them 
have 18 carbon atoms, with a carboxylic group at one of the chain 
edges and a methylic group at the other, also known as omega 
(n) termination. LA presents two double bonds, and the first 
is located at the carbon 6 from the methylic group (n-6). ALA 
presents three double bonds, and the first is located at the third 
carbon from the methylic group (n-3). 

The dietary precursors ALA and LA are rapidly absorbed and 
metabolized after their ingestion, mediated by a series of elonga-
tion and desaturation reactions. However, the conversion rates of 
n-3 and n-6 long-chain PUFAs from ALA and LA are very inef-
ficient in humans and have been estimated to be approximately 1 
and 3–6%, respectively [32–34]. The liver is the most active tissue 
in converting LA–arachidonic acid (AA) and ALA–DHA, and 
has a key role in providing PUFAs for less active tissues, such as 
the brain [34]. Elongases act by directing two carbon atoms into 
the initial part of the chain, whereas desaturases act by oxidiz-
ing two carbons of the chain and creating a double bond in a 
cis configuration [35]. After going through these processes, LA 
and ALA produce long-chain fatty acids. LA is precursor of AA, 
while eicosapentaenoic acid (EPA) and DHA are synthesized 
from ALA (Figure 1). 

Arachidonic acid, through the action of cyclooxygenase (COX) 
enzymes, produces prostanoids of the family 2 (which include 
prostaglandins and thromboxanes), whereas through the action 
of lipoxygenase (LOX) enzymes AA forms leukotrienes of the 
family 4. These molecules have proinflammatory actions and 
influence multiple physiological and pathological mechanisms 
in the organism [36]. 

The EPA long-chain fatty acid goes under COX and LOX activi-
ties and forms prostanoids of the family 3 (including prostaglan-
dins and thromboxanes) and leukotrienes of the series 5, both of 
which have anti-inflammatory properties [14]. The fatty acids AA 
and EPA compete for the same enzymes and a greater affinity of 
the AA fatty acid for COX and LOX results in an excessive produc-
tion of proinflammatory molecules (Figure 1). Unbalanced dietary 
intake of n-6 relative to n-3 PUFA may exacerbate inflammatory 
states and is thought to account for the increasing incidence of 
lifestyle-associated, chronic conditions, such as CVD, metabolic 
syndrome (MetS), autoimmune/inflammatory conditions and 
mental health problems [37]. 

Docosahexaenoic acid is a long-chain fatty acid composed 
of 22 carbon atoms and 6 double bonds, the first being located 
at the carbon 3 from the methylic group. Most brain lipids are 
glycerophospholipids composed mainly of DHA and AA, and 
thus play important roles in the development and functioning 
of the CNS [38]. DHA is necessary for the structure of brain cell 
membranes and influences signaling events that are essential to 
neuron differentiation and survival [16,39]. 

Evidence suggests that PUFAs are capable of crossing the 
BBB [40]. In humans, the majority of DHA accumulation in the 
brain occurs during the perinatal period, from the beginning of 
the third trimester of pregnancy to the second year of life [41,42]. 
The ability to synthesize DHA from ALA is greater in the devel-
oping brain than in the mature brain, and therefore diet is con-
sidered to be the best way to maintain DHA levels in the adult 
brain [43,44]. 

Behavioral & neurochemical effects of PUFAs 
Large amounts of n-3 PUFAs in the brain suggest a major role of 
these compounds in brain structure and function. The involve-
ment of PUFAs in CNS function can be assessed with the use 
of dietary manipulation in animal models. Chronic dietary defi-
ciency in ALA in rodents greatly affects the fatty acid composition 
of cerebral membrane phospholipids [45]. The balance between AA 
and DHA is a major determinant in the maturation of brain func-
tion [46]. It has been shown in rodents and nonhuman primates 
that inadequate supplies of n-3 PUFAs during the perinatal period 
result in impaired learning capacity, neurotransmission processes 
and visual function [47–50]. Therefore, the adequate ingestion of 
n-3 PUFAs is crucial for brain development, particularly at the 
time of neuronal migration, myelination, neurite growth and 
synaptogenesis [51]. 

Supplementation with n-3 PUFAs in rats improves parameters 
in different memory and learning tasks [52], while a restriction of 
these fatty acids in the diet leads to a worsening on these behavioral 
tests [53]. The supplementation with DHA in the diet also plays a 
synergic role with exercise, increasing synaptic plasticity, memory 
and learning through an increase of calcium–calmodulin protein 
kinase II (CaMKII) levels, cAMP response element-binding pro-
tein (CREB) and BDNF in the hippocampus of animals [54]. These 
proteins are essential to synaptic plasticity, memory consolidation 
and improvement of nerve impulse transmission [55]. 

In addition, n-3 fatty acids have a neuroprotective and antioxi-
dant capacity. Studies have shown that rats that had suffered brain 
injury and were treated with n-3 supplementation demonstrate a 
decreased oxidative damage (e.g., diminished levels of nitric oxide 
and protein carbonyl formation), normalized BDNF levels and 
a better performance in memory tests compared with animals 
receiving a standard diet [20,56]. 

Studies using a single-generational n-3 PUFA-deprived rat 
model have reported that an n-3 PUFA-deficient diet induces 
long-lasting hyperactive locomotion independent of stress or 
exploratory behavior in rodents [53,57–60]. The development and 
expression of amphetamine-induced sensitization is significantly 
increased in DHA-deficient rodents [61]. n-3 PUFA-deprived rats 
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also have an increased score on the Porsolt forced swim test for 
depression, and increased scores on the isolation-induced resident 
intruder test for aggression [62], suggesting that n-3 PUFAs may 
be involved in the development of behaviors commonly found in 
some psychiatric disorders, such as depression and aggression [63]. 
DHA supplementation completely reverses the anxiety-like 

behavior induced by an n-3 PUFA-deficient diet and attenu-
ates the freezing behavior in conditioned-fear stress responses, 
which suggests that DHA is involved in the modulation of stress 
response in rats [64]. Fedorova et al. showed that n-3 PUFA defi-
ciency differently affects anxiety levels in mice maintained under 
stressful conditions [16]. 
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Figure 1. Metabolic pathways of omega-3 and omega-6 fatty acid synthesis. LA and ALA are converted to long-chain fatty acids 
through reactions of desaturation and elongation. The synthesis of DHA requires the passage of precursor fatty acids into the 
peroxisome, where they suffer one cycle of b-oxidation to produce DHA. The AA and EPA fatty acids synthesize prostanoids and 
leukotrienes by the enzymes COX and LOX, respectively. AA, EPA and DHA can also synthesize resolvins, proteins that have 
neuroprotective functions. These reactions occur primarily in the liver, but they can also take place in the brain, once omega-3 and 
omega-6 are transferred by the BBB.  
AA: Arachinodic acid; ALA: a-linolenic acid; COX: Cyclooxygenase; DHA: Docasahexaenoic acid; EPA: Eicosapentaenoic acid; LA: Linoleic 
acid; LTB4: Leukotriene B4; LTB5: Leukotriene B5; LTC4: Leukotriene C4; LTC5: Leukotriene C5; LTD4: Leukotriene D4; LTD5: Leukotriene 
D5; LTE4: Leukotriene E4; LTE5: Leukotriene E5; LOX: Lipoxygenase; PGE2: Prostaglandin 2; PGE3: Prostaglandin 3; PGI2: Prostacyclin I2; 
PGI3: Prostacyclin I3; TXA2: Thromboxane A2; TXA3: Thromboxane A3.
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At a neurochemical level, long-term dietary deficiency in n-3 
PUFAs induces a reduction in the amount of dopamine (DA) and 
DA D

2
 receptors in the frontal cortex [65]. Following an amphet-

amine challenge, greater DA and DA metabolite concentrations 
were observed in the ventral striatum, but not in the prefrontal 
cortex in these animals [61]. In addition, using microdialysis, it was 
shown that there was a decrease in cortical DA release accompa-
nied by an increase in metabolite release, suggesting modifications 
in DA turnover and metabolism in these rats [66,67]. Extracellular 
DA is increased in the nucleus accumbens of awakened n-3 PUFA-
deficient rats [68]. These results suggest that the mesolimbic DA 
pathway is more active, whereas the mesocortical pathway is less 
active in n-3 PUFA-deficient rats than in control rats [69]. 

When offered during rodent gestation, n-3-deficient diets impact 
both the pregnant female and the fetus. Specific brain regions 
of the pregnant female rat are differentially depleted of DHA, 
namely the frontal cortex and the temporal lobe, regions involved 
in cognition and affect [70]. In addition, maternal dietary n-3 fatty 
acid deprivation impairs fetal brain DHA accretion and phos-
phatidylserine metabolism [71,72], which may change the release 
of lipid mediators and neurotransmitter precursors important to 
brain function [73,74]. In n-3-deficient animals, glucose utilization 
and glucose transporter GLUT

1
 immunolabelling are significantly 

altered in cortical brain areas [75,76], suggesting an altered central 
energetic metabolism, which is essential to cognitive performance 
and neuronal activity. 

These effects are not limited to the fetal period. Other sys-
tems implicated in certain psychiatric disorders seem to be per-
sistently altered following a chronic deficiency in n-3 PUFAs 
from conception. For instance, immunohistochemical studies 
reveal an increase in the D

2
 receptor in discrete regions of the 

mesolimbic and mesocortical pathways, as well as in a large num-
ber of brain areas from the n-3 PUFA-deficient pups at 2 weeks 
of age, possibly to compensate for low levels of DA in synaptic 
clefts during brain development [77]. In addition, a decrease of 
the DA-synthesizing enzyme tyrosine hydroxylase accompanied 
by a downregulation of the vesicular monoamine transporter 
(VMAT-2) and a depletion of VMAT-associated vesicles in the 
hippocampus were observed in deficient offspring compared with 
adequately fed controls [78]. In adulthood, rats raised from con-
ception on diets containing low amounts of n-3 PUFAs have a 
decreased number of tyrosine hydroxylase-positive cells in the 
substantia nigra pars compacta and ventral tegmental area, with 
dendritic depletion and isolation of tyrosine hydroxylase-positive 
cells [79]. These findings support a role for n-3 PUFAs in the sur-
vival of DA neurons and suggest that altered DA cell number, as 
well as function, may play a role in the behavioral effects observed 
in rats raised on n-3 PUFA-deficient diets. Moreover, the n-3 
PUFA-deficient diets can affect cholinergic neurotransmission, 
in which a higher basal acetylcholine release in the hippocampus 
and a reduction in muscarinic receptor binding was observed in 
deficient rats compared with controls [47]. 

Deficiency in n-3 PUFAs during fetal life is also associated 
with metabolic disturbances. The ingestive behavior in the main-
tenance of body fluid and metabolite homeostasis is affected by 

limiting the perinatal supply of dietary n-3 PUFA, with an exag-
gerated salt appetite caused by n-3 PUFA deficiency [80]. Blood 
pressure is elevated in n-3 PUFA-deficient animals [81,82]. It has 
been suggested that n-3 PUFA deficiency causes an enhanced acti-
vation of the renin–angiotensin system [83], a system involved in 
both the control of sodium appetite and blood pressure. Studies in 
rodents have shown that insulin resistance can be improved when 
fat-rich diets contain n-3 PUFAs [84–86]. These diets have been 
shown to promote changes in the fatty acid profile of membrane 
lipids of endothelial cells, as well as to modulate inflammatory 
cytokines, reducing the atherogenic lipid profile [87,88]. They also 
reduce the weight gain and improve postprandial lipemia in the 
obese JCR:LA-cp rat [89]. 

The chronic n-3 deficiency also seems to interact with early 
life stressors to predict vulnerability to behavioral alterations. 
For instance, the early maternal separation paradigm is a valid 
model for early life stress and development of a depression-like 
syndrome in rats [90]. Using this paradigm in chronically dietary 
n-3 PUFA-depleted dams, behavioral impulsivity and changes in 
the reward response were shown in the adult offspring [91]. The 
n-3 PUFA-deficient status and the maternal separation stress acted 
synergistically to increase sucrose consumption used as marker of 
reward sensitivity. Furthermore, n-3 PUFA-deficient rats showed 
increased reactivity to novelty in the open field test. 

Researchers were able to demonstrate that a reversal diet with 
adequate n-6 and n-3 PUFAs given during the lactating period 
to rats originating from ALA-deficient dams is able to restore 
both the fatty acid composition of brain membranes and several 
parameters of dopaminergic neurotransmission. On the other 
hand, when given from weaning, there was only a partial recov-
ery of biochemical parameters, such as fatty acid content, and 
no recovery of neurochemical factors, such as DA. Therefore, 
profound n-3 PUFA deficiency during the lactating period is 
suggested to be an environmental insult leading to irreversible 
damage to specific brain functions, mainly the ones related to the 
dopaminergic function. This could be linked to the emergence 
of critical neurodevelopmental processes during this period [92]. 

This evidence shows that n-3 PUFAs are relevant to the promo-
tion of brain development and function, and are important to 
regulate behavioral and neurochemical aspects related to mood 
disorders, such as stress responses, depression and aggression, as 
well as dopaminergic content and function. In addition, these 
fatty acids also play important physiological roles as modulators 
of the metabolic status and physical health, decreasing CVD and 
other chronic diseases. 

The role of n-3 PUFAs in BD 
The role of n-3 PUFAs in mood disorders has been extensively 
reviewed (the interested reader can consult [17–19,93–96]). The focus 
here is on the potential role of n-3 PUFAs as therapeutic targets 
specifically in BD. First, we review the observational evidence on 
the relationship between BD and n-3 PUFA intake (epidemiologi-
cal research) and n-3 PUFA status (biochemical studies). Second, 
human intervention studies that support the therapeutic efficacy 
of n-3 in BD are summarized. 
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An ecological study found that lower per capita fish/seafood 
consumption, a surrogate for n-3 dietary intake, was associated 
with higher prevalence rates of bipolar spectrum disorders, across 
ten countries [97]. In other cross-national epidemiological analyses, 
Hibbeln and colleagues found similar inverse correlations with 
prevalence rates of major depression [98] and postpartum depres-
sion [99]. Although this does not prove causality, these data suggest 
that a greater intake of seafood may account for a lower prevalence 
of mood disorders. However, most epidemiological research has 
been performed at the individual level, including cross-sectional 
studies of the association between depressive symptoms and 
fish/n-3 PUFA dietary intake. Most (e.g., [100,101]), although not 
all [102], studies have reported a negative association between fish 
or n-3 PUFA intake and self-reported major depressive disorder 
(MDD) or depressive symptoms, hence supporting a benefit of 
consumption of n-3 in affective disorders. For example, a large 
epidemiological study found that individuals who ate fish at least 
twice a week are less likely to report depressive symptoms [100]. 

Biomarkers of n-3 status are thought to reflect exposure better 
than estimates of dietary intake. Since the CNS is very difficult 
to examine in vivo, PUFA levels may be assessed in other cell 
types or peripheral tissues. Blood PUFA content is positively 
correlated with PUFA intake [103] and may be a suitable index 
of PUFA composition in brain cell membranes, although not 
identical [104]. The erythrocyte membrane phospholipid (fatty 
acid) content is the standard method to assess n-3 PUFA status 
in clinical practice. Several case–control, biochemical studies 
have found significantly decreased levels of DHA [105,106] or ALA 
and EPA  [107] in erythrocytes of BD patients compared with 
healthy controls, although not all have [108]. In addition, healthy 
first-degree relatives of BD patients showed a tendency towards 
reduced n-3 fatty acids in blood phospholipids [109]. Still, blood 
PUFA levels have been negatively correlated with the severity of 
affective symptoms in some [108,110], although not all [106], studies. 
Patients with MDD also show lower levels of n-3 PUFAs, DHA 
and EPA, and higher ratios of n-6:n-3 PUFAs than controls (for a 
meta-analysis, see [111]), as well as a negative association between 
n-3 PUFA status and the severity of affective symptoms [96,112]. 
Moreover, DHA concentrations in the post-mortem orbitofrontal 
cortex of bipolar patients are significantly lower than those of 
healthy controls [113], whereas Schwarz and colleagues found 
lipid abnormalities in gray and white matter, and erythrocyte 
membranes of drug-naive BD patients [114].

The therapeutic effects of n-3 PUFAs have been tested in sev-
eral neuropsychiatric disorders, mostly in MDD and Alzheimer’s 
disease, but also in schizophrenia, attention-deficit/hyperactiv-
ity disorder and anxiety disorders (for reviews, see [94,95,115–117]). 
Few double-blind, placebo-controlled, randomized clinical tri-
als (RCTs) to date have investigated the therapeutic role of n-3 
PUFAs (fish oil, ethyl-EPA, EPA or DHA) in patients with BD.

In a pioneer prophylaxis trial, Stoll and colleagues showed that 
n-3 PUFAs improved the short-term course of BD [118]. During 
this 4-month study, patients randomized to adjunctive treat-
ment with high doses of fish oil (9.6 g/day of DHA plus EPA; 
n = 14) had significantly longer remission and significantly greater 

improvements of depressive symptoms, bipolar symptoms and 
global functioning than the placebo group (n = 16). However, 
no positive effect on manic symptoms was observed. 

In a subsequent 12-week RCT, Frangou et al. compared the 
efficacy of two doses of ethyl-EPA (1 g/day and 2 g/day) versus 
placebo as add-on treatment in 75 patients with bipolar depres-
sion [119]. Both doses of EPA significantly improved depressive 
symptoms, as well as global bipolar symptoms, compared with the 
placebo group, with no difference in manic symptoms. Moreover, 
a dose–response effect was not observed. By contrast, a multi-
center collaborative trial of the Stanley Foundation did not find 
any evidence of efficacy over placebo of ethyl-EPA 6 g/day admin-
istered as adjunctive therapy for 4 months to outpatients with 
bipolar depression (n = 59) or rapid cycling BD (n = 62) [120]. 
The first RCT of pediatric BD has been published recently [121]. 
Augmentation with flax oil containing ALA did not confer bet-
ter mood stabilization than placebo (olive oil). At study intake, 
51 symptomatic children and adolescents were enrolled, but less 
than 50% completed this 16-week study. 

Additional data from four small, open-label trials suggest 
that adjunctive n-3 fatty acids may reduce symptoms of bipolar 
depression [122], irritability associated with BD [123] and manic 
and depressive symptoms of children and adolescents with pedi-
atric BD [124]. Moreover, monotherapy with EPA plus DHA was 
associated with modest improvements in manic symptoms in an 
8-week study of juvenile BD [125]. 

Putative mechanisms of action 
Several mechanistic pathways have been suggested to biologically 
explain the link between n-3 and BD, including: alterations in 
membrane function (membrane fluidity, receptor function, neuro
transmission, membrane-related enzyme and ion channel activity, 
glucose transport and signal transduction) reviewed in [126]; mood 
stabilization by targeting the AA cascade [127]; BDNF enhance-
ment [28] via several mechanisms (see below); inflammation; 
changes in the synthesis of eicosanoid (prostaglandins, leukotri-
enes and thromboxanes) and docosatriene (resolvins and neuro-
protectins) families of lipid mediators [128,129]; and changes in the 
expression of many CNS genes [130]; EPA seems to increase oxygen 
and glucose supply to the brain [131]; and protection against oxida-
tive stress [115]. The DHA fatty acid incorporation into neuron 
cell membranes increases its order, thereby leading to a better 
binding of neurotransmitters with their receptors [132]. Moreover, 
it eases signal transduction pathways [133,134]. DHA and EPA can 
also modulate brain function by changing the production and 
function of neurotransmitters, such as serotonin and DA [135,136].

Moreover, several neuroprotective effects of DHA have been 
reported in preclinical models of Alzheimer’s disease, includ-
ing anti-inf lammatory activity, antioxidant effects, neuro
protective metabolites (neuroprotectin D1), enhanced glucose 
transport and improved synaptic and membrane fluidity [137]. 
These mechanisms result in reduced inflammation and oxidative 
stress, enhanced neuroprotective/neurogenic pathways, increased 
glucose utilization and neuron and synaptic function. PUFAs 
protect neurons directly by preventing neuronal apoptosis and 
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by suppressing production of proinflammatory cytokines [138]. 
Most of these neuroprotective mechanisms are relevant for BD. 
For example, n-3 supplementation increased cortical concentra-
tions of N-acetyl-aspartate, a putative marker of neuronal den-
sity and integrity, in a small sample of female BD patients [139], 
thereby protecting against excitotoxic apoptosis. In addition, 
n-3 PUFAs also increased glutathione, the major endogenous 
antioxidant defence [140]. Altogether, n-3 and medications used 
to treat BD seem to share several mechanisms of action (see 
previously). It has been suggested that they both may work in 
a synergistic fashion and that n-3 may augment the therapeutic 
effects of standard antibipolar medications by means of those 
mechanisms [117,118,127,141]. This synergistic action could improve 
patients’ mental health. 

Discussion
This article shows the molecular pathways related to the role of 
n-3 as a neuroprotective and neurogenic agent. The relationship 
of n-3 with BDNF is the focus of this article. The use of n-3 as a 
mood stabilizer among BD patients is discussed. 

A growing body of evidence has suggested that BDNF plays an 
important role in the pathophysiology of MDD and BD. BDNF 
is a member of the growth factor family, which is involved in syn-
aptic efficacy, neuronal connectivity, dendritic arborization and 
neuroplasticity [22]. Different stimuli can induce BDNF synthesis 
in neuron cells. The human BDNF gene has an extremely complex 
structure composed of 11 exons and nine promoters, which can be 
differentially activated [142]. Such a complex set of genomic pro-
moters and exons is thought to mediate an accurate control of the 
gene transcription. Evidence indicates that transcripts are differ-
entially distributed across brain regions, in different cell types and 
even within different parts of the neuron [143]. BDNF transcrip-
tion is regulated mainly by the transcription factor CREB [144]. 
CREB must be phosphorylated to pCREB in order to transcribe 
CREB-regulated genes, including BDNF [145]. Once synthesized 
and processed, the mRNA is translated into a precursor form of 
the protein named proBDNF. ProBDNF is either proteolytically 
cleaved intracellularly by enzymes and secreted as the mature 
BDNF, or secreted as proBDNF and then cleaved by extracellular 
proteases to mature BDNF (for a review, see [146]). 

BDNF is highly expressed in the cerebral cortex and hippo-
campus, brain areas known to regulate complex brain func-
tions, such as memory and emotion [147]. Furthermore, it has 
been consistently associated with cognitive function in differ-
ent species. Several learning tasks are associated with increased 
BDNF mRNA levels in rats [148], and it seems that BDNF plays 
an important role in the late phase of long-term potentiation. 
Hippocampal BDNF is required for short-term memory forma-
tion of an aversively motivated learning task in one-trial inhibi-
tory avoidance training in rats [149], and evidence suggests that 
there is a BDNF-dependent phase in memory persistence pro-
cesses  [150]. Furthermore, a significant positive association has 
been shown between serum BDNF levels and a test of verbal flu-
ency in humans, once again suggesting the importance of BDNF 
in neurocognitive processes [151]. 

Such a cognitive impairment and functional decline has 
been shown in BD patients [152,153]. A single nucleotide poly
morphism that leads to a valine-to-methionine substitution at 
the codon 66 in the BDNF gene is associated with impaired 
episodic memory in healthy subjects [154] and significantly worse 
performance in the Wisconsin Card Sorting Test (WCST) in 
Val/Met BD patients compared with patients with the Val/Val 
genotype [155]. In addition, a prospective study has demonstrated 
that BD patients that are carriers of the Met allele display greater 
temporal lobe reductions compared with Val/Val patients over 
a 4-year follow-up period [156]. Altogether, it seems that BDNF 
may be associated with the cognitive decline associated with the 
length and progression of BD. 

Serum BDNF levels are decreased in BD patients during manic 
and depressive episodes compared with controls [27,157]. Moreover, 
Kauer-Sant’Anna and colleagues compared first-episode ver-
sus multi-episode BD patients, showing that BDNF levels are 
decreased after multiple episodes [158]. This has led to the hypo
thesis that episode-related changes in neurotrophins may explain 
some of the brain structural changes observed in BD patients. 
Serum BDNF levels have been negatively correlated with length 
of illness [158], and are thus suggested to play an important role 
in the pathophysiology of BD [23]. 

Accumulated data suggest that BDNF may be associated with 
the remission of symptoms in BD, thus emphasizing the potential 
therapeutic use of BDNF-enhancing drugs in their treatment. 
There is evidence for a normalization of BDNF levels after treat-
ment and remission of acute manic symptoms in BD patients [159]. 
For instance, a twofold increase in the plasma levels of BDNF has 
been shown after 6 months of treatment in patients with a first 
episode of psychosis, including those with BD [160]. Such data 
have also been confirmed in a recent meta-analysis [161]. BDNF 
levels may be associated with improvement of acute symptoms in 
BD and may also offer a biological marker of clinical response to 
treatment in acute mania and psychosis. 

Antibipolar medications, such as mood stabilizers and anti
depressants, act in signaling pathways that enhance neuro-
trophic and neuroprotective effects [25,26,162,163]. Such enhance-
ment has been partially explained by an increased activity of 
the transcription factor CREB via the adenylate cyclase path-
way – that is, through increased PKA activity. n-3 PUFAs may 
play similar roles in BD, as previously mentioned [21,137,141,164]. 
Interestingly, lithium can increase 17-hydroxy-DHA, a metabo-
lite of DHA with neuroprotective properties, in a rat model of 
neuroinflammation [165]. 

If both n-3 PUFAs and BDNF have been implicated in the 
pathophysiology of BD, one could ask whether any connection 
exists between n-3 PUFAs and BDNF, and ultimately whether 
such a connection, if it exists, is of any relevance for BD. The 
neuroprotective/neurotrophic effects of n-3 PUFAs have been 
reviewed elsewhere [166]. Here, the focus will be on neurogenesis 
and regulation of BDNF gene expression by n-3 PUFAs. 

Mounting preclinical evidence suggests that n-3 PUFAs may 
promote hippocampal neurogenesis in adult animals [167–169]. 
Animals with n-3 PUFA supplementation showed an increase 
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of 5-bromo-2 -́deoxyuridine (a timidine analogue) in neurons 
of the hippocampal dentate gyrus [167]. These positive effects of 
n-3 PUFA on neurogenesis may be explained by several mecha-
nisms  [168], including processes associated with the structural 
and functional roles of PUFAs in the neuronal membranes (i.e., 
membrane order), such as enhanced neurotransmission and cell 
signaling; and/or immunomodulatory effects via the inhibition of 
proinflammatory cytokines [170]. Apart from these indirect effects, 
n-3 PUFAs may enhance neurogenesis via directly controlling the 
transcription of key genes in the brain [130]. 

It is well-documented that n-3 PUFAs may regulate the tran-
scription of many genes [171–173]. Specifically, microarray studies 
made it clear that n-3 PUFAs modulate the expression of genes 
involved not only in lipid metabolism, but also in the pathways 
of interest here, such as oxidative stress response and antioxidant 
capacity, cell proliferation, cell growth and apoptosis, and cell 
signaling [173]. Moreover, the effects of n-3 PUFAs on gene expres-
sion seem to show some tissue specificity and this would subserve 
the pleiotropic effects of these essential nutrients. Interestingly, 
PUFA-enriched diets lead to significant gene-expression changes 
in the rat brain [130] and this may help to better understand how 
n-3 PUFAs modulate the affective, neurocognitive and behavioral 
responses of the human brain. 

BDNF expression can be enhanced by exercise, learning activi-
ties and dietary nutrients, such as vitamin E [174,175], whereas a 
diet high in saturated fat and sucrose inhibits its expression [174]. 
As previously discussed, medications used to treat BD are also 
associated with increased levels of BDNF [24,25,176]. Hence, a shift 
paradigm in the treatment of BD has been recently proposed [23]. 
Specifically, substances or interventions that increase BDNF lev-
els/expression in the brain may exert mood-stabilizing effects and 
deserve further research. 

In 2003, Logan proposed a novel mechanism of action 
“involving omega-3 modulation of CREB and BDNF” [28]. 
Recent evidence supports that n-3 PUFAs may modulate neuro
trophins  [20,21,30,177–179]. As a first confirmation of the original 
hypothesis [28], n-3 PUFAs normalized hippocampal BDNF 
levels and counteracted the learning disability after traumatic 
brain injury in rats [20]. Moreover, in a rat model of depression, 
a clinically relevant reduction in brain DHA content was asso-
ciated with several neurobiological changes, including reduced 
hippocampal BDNF expression [30]. Consistent with this, n-3 
PUFA deprivation led to decreased levels of DHA, BDNF, 
pCREB and p38 MAPK in the rat prefrontal cortex, whereas 
the addition of DHA induced BDNF protein expression in rat 
cortical astrocytes [21]. Hence, increasing BDNF gene expression 
would be a direct mechanism that may mediate at least in part 
the enhancing effects of n-3 PUFAs on neurogenesis [177]. In 
addition, it seems that not only do n-3 PUFAs increase BDNF 
levels, but they also increase neurotrophin signaling by activating 
one branch of classical neurotrophin signaling via the PI3K/Akt 
pathway (Figure 2) [166]. 

Collectively, these data suggest that reversing abnormal 
BDNF/CREB-related processes would be one of the potential 
mechanisms by which n-3 PUFAs may represent a particularly 

relevant molecular and therapeutic target in BD. However, other 
mechanisms, such as fatty acid composition of cellular mem-
branes, modulation of the dopaminergic systems, and the role 
of n-3 PUFAs on neurodevelopment and oxidative stress [180], 
may also be essential to explain the potential beneficial effects 
of n-3 in BD. 

Expert commentary 
Epidemiological and biochemical research provides persuasive 
evidence for an association between BD and decreased n-3 PUFA 
intake/status. Overall, lower levels of n-3 PUFAs have been found 
in blood and post-mortem brain tissues of BD patients. The rea-
son is not yet clear, but deficient intake/status has been invoked 
as a preventable risk factor for recurrent affective disorders [96]. 
Since observational research is useful to estimate the prevalence 
of this putative deficiency in BD, future studies need to use larger 
samples and better control for several confounders, such as socio-
economic status, which may be linked to more protective lifestyles 
and healthier diets [181]. 

So far, two studies found improvements in depressive and bipo-
lar symptoms following supplementation with EPA plus DHA or 
ethyl-EPA, compared with placebo [118,119], although neither of the 
studies found similar improvements in mania. Conversely, two 
other studies found no benefit of supplementation with ethyl-EPA 
or flax oil [120,121] for depressive or manic symptoms. This evidence 
is also difficult to interpret owing to marked study differences 
in terms of dosage, composition and duration of interventions; 
inclusion criteria; comparators; and outcome measures, to name 
a few. Moreover, adequate, biologically inert placebos must be 
used in future RCTs. For example, olive oil may also have some 
neurotrophic/neuroprotective effects [182]. 

Overall, n-3 PUFAs seem to be more effective to improve 
depressive rather than manic symptoms [183]. Consistent with this, 
several independent meta-analyses concluded that n-3 PUFAs are 
an effective adjunctive treatment for unipolar and bipolar depres-
sion [17,18], and these antidepressant properties have been dem-
onstrated in the forced swimming test in animal models [179,184]. 
Modest benefits on manic symptoms were found in juvenile BD 
patients following n-3 supplementation, and this suggests that the 
value of n-3 PUFAs on BD might vary according to the patients’ 
age. However, this evidence stems from two small, open-label 
trials [124–125] and needs to be confirmed.

Several aspects of mania and depression can be replicated by 
pharmacological manipulations of dopaminergic neurotrans-
mission in humans, such as elevation of mood, reduction in 
the need for sleep, increased impulsivity and impaired cognitive 
function [185]. There is evidence from structural [186] and func-
tional [187] MRI studies that the brain areas innervated by DA 
may be abnormal in BD, although imaging studies still need to 
demonstrate consistent abnormalities. Analysis of the metabo-
lites of DA indicates overactivity of DA in mania and decreased 
activity in depression [188,189]. Actions of n-3 PUFAs on dopa-
minergic content and function may explain why they are effec-
tive to treat negative, but not positive, psychotic symptoms [190] 
and this may also account for their higher efficacy in relatively 
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hypodopaminergic states, such as depres-
sion, versus the excessive dopaminergic 
neurotransmission in mania.

Supplementation with n-3 PUFAs is a 
potential treatment for BD, but far more 
work is needed to clarify this relationship. 
Future studies must be sufficiently powered 
and have an adequate length because dura-
tion of most existing studies may be too 
short to reverse a putative chronic deficit 
of n-3 PUFAs. If long-term supplemen-
tation seems to be necessary to observe 
benefits in cardiovascular health  [191] and 
cognitive deterioration [192], it is likely that 
similar periods of months to years are also 
needed to obtain maximum benefits on 
mental health. The most suitable timing, 
dosage and duration of interventions must 
be established. These will probably differ 
according to the clinical staging [193,194], for 
example, primary prevention versus second-
ary prevention studies, early-stage versus 
late-stage BD patients. The prophylactic 
effects observed in the pioneer study of 
Stoll and colleagues [118] require replication. 

Most of the studies regarding the neuro-
protective effects of n-3 are in vitro stud-
ies with cell culture or in vivo studies with 
animal models, and there is an obvious dif-
ficulty in translating such findings to the 
clinic. For instance, as previously discussed, 
there are no studies showing an association 
between BDNF and n-3 PUFAs in BD 
patients, even though both of these molecules have already been 
assessed in this disorder, and seem to share common intracellular 
signaling pathways. Such studies may help to clarify and further 
support the beneficial effects of n-3 PUFAs on neuroprotective 
signaling in BD. 

Five-year view 
Despite recent treatment progress, many BD patients still face 
several unmet needs, in terms of persistent affective and neuro-
cognitive symptoms, and high rates of nonrecovery, as well as 
compromised quality of life and psychosocial functioning [7,153]. 
Given the limitations of the available antibipolar medications and 
the increasing awareness that BD is a systemic disease [5], inter-
ventions with pleiotropic effects are needed to obtain significant 
improvements in meaningful outcomes for BD patients. The simi-
lar actions of n-3 PUFAs and classical mood stabilizers modulating 
signal transduction systems, such as PKC, activity and phosphati-
dyl inositol, helped to unlock at least in part the pathophysiology 
of BD [118,141]. It is proposed that the n-3–BDNF association is 
a promising target for hypothesis-driven, rational drug develop-
ment for this severe, prevalent disorder. Should this progress be 
confirmed, n-3 supplementation must be offered to BD patients. 

Individual differences in genetic background or baseline n-3 
status, among other factors, may explain why not all patients 
respond to PUFA supplementation. On the one hand, inter-
vention trials in the field of cognitive deterioration reveal that 
DHA only benefits those patients lacking the ApoE4 allele [137]. 
Similarly, polymorphisms in genes regulating key enzymes of 
PUFA metabolism might modulate the effects of n-3 on mental 
health outcomes [195]. Indeed, polymorphisms in genes coding for 
fatty acid desaturases may influence DHA status [196] and treat-
ment response [197]. In this regard, pharmacogenomic studies will 
help to target BD patients most likely to benefit from adjuvant 
intervention. The fatty acid composition of serum phospholipids 
is genetically controlled by the FADS1 FADS2 gene cluster [197] 
located in the chromosomal region 11q12–13.1, which in turn is 
a susceptibility locus for BD [198]. Moreover, polymorphisms or 
mutations in the desaturase genes may account for PUFA dys-
regulation in BD [199] and impaired fatty acid and phospholipid 
metabolism has been involved in the etiology of BD [200]. On 
the other hand, it has been suggested that therapeutic effects 
from supplementation may be found only in PUFA-deficient 
patients  [201]. Conversely, subjects without baseline deficits are 
less likely to obtain benefits from additional supplementation [51]. 

AAAA

DHA Diet n-3

PLA
Free DHA

Akt/PKB

mTOR

ERK/MAPK

PI3K
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CaMKII
BDNF
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Figure 2. Omega-3 fatty acids increase BDNF synthesis and intracellular 
signaling in neurons. (A) Mature BDNF binds to the TrkB receptor and activates three 
main intracellular signaling pathways involving PLC-g, ERK/MAPK and Akt/PKB. 
Activation of PLC-g leads to the release of calcium from the ER and to the activation of 
CaMKII, leading to the phosphorilation of CREB and activation of gene transcription. 
Activation of the ERK/MAPK pathway can also regulate transcription through the 
phosphorylation of CREB, whereas PI3K phosphorylates and activates Akt/PKB and 
mTOR, regulating translation initiation. (B) DHA increases neurotrophic signaling by 
activating one branch of the classical BDNF signaling via PI3-K/Akt pathways. (C) DHA 
increases BDNF synthesis by activating MAPK signaling. Activated MAPK phosphorylates 
CREB, which translocates into the nucleus and activates BDNF gene transcription. 
BDNF: Brain-derived neurotrophic factor; CaMKII: Calcium–calmodulin kinase II; CREB: 
cAMP response element-binding protein; DHA: Docosahexaenoic acid; ER: Endoplasmic 
reticulum; n-3: Omega-3 fatty acids; PLA: Phospholipase A2; PLC-g: Phospholipase C g; 
TrkB: Tyrosine kinase receptor B.
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If that is the case, future intervention trials should use subopti-
mal baseline n-3 status as an inclusion criterion to select more 
homogenous samples of likely ‘responsive’ patients [202].

Biochemical measures of PUFA levels are necessary to detect 
PUFA-deficient subjects and may represent clinically useful 
biomarkers. The n-3 index (EPA plus DHA% in erythrocyte 
membrane) has been suggested as a biomarker to flag coronary 
heart disease risk. An n-3 index of 8% or higher would confer 
maximum protection, whereas an index of 4% or less has been 
associated with the least cardioprotection [203]. This represents 
a significant step ahead of psychiatry, but by the same token, 
a new avenue to be explored in mental health [202]. Indexes of 
n-3 content may be useful for different purposes in clinical and 
research settings, such as monitoring patients’ adherence during 
intervention trials, stratifying patients according to risk levels or 
devising interventions aimed to optimize values of these indexes. 

Currently, the erythrocyte membrane fatty acid content is the 
standard method to assess n-3 PUFA status in clinical practice. 
This process is time consuming [204] and sometimes blood extrac-
tion may be uncomfortable or difficult to perform in certain 
patients. Measuring PUFA levels in cells of the oral mucosa is 
an easy, noninvasive assessment that may be useful for patients 
reluctant to consent because of blood sampling or for special 

populations, such as pediatric BD. In infants, this has been 
shown to reflect blood PUFA levels and dietary intake [205], but 
not long-term exposure [206]. In addition, desaturase expression 
in leukocytes has been suggested as a new diagnostic method to 
detect nutritional PUFA deficits at an early stage [207], although 
this needs replication. 

In parallel with RCTs, experimental studies (cell culture and 
animal models) must be prioritized to identify the mechanistic 
pathways that could explain some or all of the reported benefits 
of n-3 PUFAs on mood, cognition and behavior. It is likely that 
the benefits of n-3 PUFAs for physical health might be medi-
ated mostly by their anti-inflammatory effects, whereas mental 
health benefits might result from additional mechanisms, such 
as enhancing BDNF [28] or regulating key signal transduction 
pathways (the ‘arachidonic acid cascade’ [127]). Future research 
should also monitor specific biomarkers to examine the putative 
effects of n-3 PUFAs on the pathophysiological processes of BD, 
such as decreased neurogenesis and increased apoptosis, oxidative 
stress, excitotoxicity or neuroinflammation [180]. The interaction 
of n-3 PUFA status and life-course events, such as chronic stress, 
may affect the vulnerability to CNS abnormalities and therefore 
to psychiatric disorders. 

Potential benefits of n-3 PUFAs have been described for CVD, 
MetS and related conditions, autoimmune and inflammatory con-
ditions and cancer [208–211], all of which are frequently associated 
with BD. It has been hypothesized that n-3 may represent a biologi-
cal link between affective disorders and CVDs [212]. These comor-
bidities might be even explained by a common impairment in fatty 
acid and phospholipid metabolism, which would be corrected by 
PUFA [201]. Predictably, supplementation with n-3 PUFAs will 
improve BD patients’ physical health and decrease allostatic load 
(see later), and this clearly represents an emerging area of research. 
Here we propose that future studies examine the effects of PUFA 
supplementation above and beyond measures of clinical outcomes, 
by also using intermediate variables. The inclusion of biomarkers 
of allostatic load (e.g., interleukins, TNF-a, C-reactive protein, 
glucocorticoids, oxidative stress, Systemic Toxicity Index [213]) and 
neurogenesis/neuroprotection (the BDNF–TrkB signaling path-
way and other neurotrophins) represents a significant opportunity 
for future studies and merits further development. To our knowl-
edge, these issues have not been explored previously. 

Similarly, family studies may help to reveal whether the puta-
tive n-3 PUFA deficiency and/or abnormal metabolism show a 
familial association or even fulfill endophenotype criteria [214]. 
If that is the case, this endophenotype might be used for early 
detection and treatment of at-risk individuals, genetic studies or 
the development of animal models of BD. Potential benefits of 
n-3 PUFAs have been recently demonstrated among subjects at 
ultra-high-risk for psychosis [215]. 

Finally, we suggest undertaking multimodal, structured interven-
tion programs in BD. n-3 PUFAs may have a synergistic effect not 
only with standard medications used to treat BD, but probably also 
with other lifestyle interventions that enhance neurogenesis or the 
BDNF–TrkB signaling pathway, such as physical exercise. There 
is preliminary, preclinical evidence supporting this (Figure 3) [216]. 

Interventions Mediators Expected benefits

Antibipolar
medications

Physical activity

Cognitive
training or
remediation

Diet/nutrients:
PUFAs,
antioxidants 
and so on

BDNF

Neurocognition

Mood regulation

Behavior

Figure 3. BDNF as a common mediator of the potential 
benefits that may be obtained with multimodal 
interventions in bipolar disorder. Several pharmacological 
agents used to treat bipolar disorders, such as mood stabilizers, 
antidepressants and atypical antipsychotics, increase BDNF levels. 
Interventions on lifestyle-related factors, such as regular physical 
exercise and diet/nutrition, also increase neurotrophins. In 
addition, the neurocognitive benefits derived from psychosocial 
interventions, such as cognitive training or remediation, are 
thought to be mediated by neurotrophins. These strategies may 
have synergistic effects. Multitargeted interventions that increase 
BDNF and other neutrophins may maximize neurogenesis/
neuroprotection, and as a result potentially improve mood, 
neurocognitive functioning and mental health. The expected 
benefits from each intervention may be different, but in all 
instances BDNF would be a putative key mediator.  
BDNF: Brain-derived neurotrophic factor; PUFA: Polyunsaturated 
fatty acid.
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Key issues

•	 The omega-3 (n-3) and omega-6 long-chain, polyunsaturated fatty acids (LC-PUFAs or PUFAs) are important for many functions in the 
organism, including the structures of cellular membranes, metabolic processes, inflammation and brain function. 

•	 PUFA incorporation into neuron cell membranes increases its fluidity, thereby enhancing neurotransmission and facilitating signal 
transduction pathways. 

•	 Evidence from animal models of dietary n-3 deficiency suggest that these fatty acids play important roles modulating neurochemical 
pathways controlling behavioral aspects such as locomotor activity, depressive-like states and responses to reward, domains classically 
linked to BD models. 

•	 Blood n-3 PUFA content is positively correlated with n-3 PUFA intake and may be a suitable index of PUFA composition in brain cell 
membranes. Lower levels of n-3 PUFAs have been found in blood and post-mortem brain tissues of BD patients. 

•	 n-3 PUFAs seem to be an effective adjunctive treatment for unipolar and bipolar depression, but further large-scale, well-controlled 
trials are needed to examine its utility in BD. 

•	 BDNF, a protein involved in neurogenesis and neuroplasticity, has been consistently associated with the pathophysiology of BD. 
Changes in neurotrophins in BD and the effects of antibipolar medications on neurotrophin levels are well-documented. 

•	 BDNF levels could be a marker of clinical response to treatment in BD and emphasizes the potential therapeutic use of BDNF-enhancing 
drugs in their treatments. 

•	 n-3 PUFAs have been shown to induce BDNF expression, which may be responsible for their neuroprotective effects. 

•	 The BDNF–TrkB signaling pathway is one of the neurobiological mechanisms of action that have been proposed to explain the 
mood-regulating effects of n-3 PUFAs in BD. Moreover, the potential antiapoptotic effects of n-3 PUFAs deserve more attention.

Conclusion
Epidemiological, biochemical, experimental and intervention evi-
dence is still limited, but support the hypotheses that low PUFA 
status is involved in the pathogenesis of BD and that n-3 supple-
mentation is useful for BD, especially to treat depressive symptoms. 
Longer-term, well-controlled RCTs are justified to confirm this 
efficacy and establish the minimum dose and length of supplemen-
tation required to significantly improve intermediate and clinical 
outcomes in BD. It is proposed that the n-3–BDNF connection is 
involved in the pathophysiology of BD and represents a promising 
target for developing a novel class of rationally devised therapies. 

Bipolar disorder is a severe disorder, which is frequently associ-
ated with chronic conditions, such as CVD and MetS. Benefits 
of n-3 fatty acids have been shown for these disorders [217]. n-3 

PUFAs are safe and well-tolerated nutrients [218] and only mild, 
transient adverse events, such as nausea, are likely to occur [116,183]. 
Moreover, they represent an appealing option for patients, their 
relatives and clinicians because they are relatively cheap and 
perceived as a ‘natural remedy’. Altogether, it is predicted that 
supplementation with n-3 PUFAs will benefit the physical health 
of BD patients. To our knowledge, this hypothesis has not been 
tested to date. 
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Therapeutic use of omega-3 fatty acids in bipolar disorder

Activity Evaluation
Where 1 is strongly disagree and 5 is strongly agree

1 2 3 4 5

1. The activity supported the learning objectives.

2. The material was organized clearly for learning 
to occur.

3. The content learned from this activity will 
impact my practice.

4. The activity was presented objectively and 
free of commercial bias.

1. Based on the above review by Dr. Balanzá-Martínez and colleagues, which of the following statements about the 
role of omega-3 polyunsaturated fatty acids (n-3 PUFAs) in brain development and functioning is most likely 
correct?   

£ A Animal models of n-3 PUFA deficiency suggest that the neurotransmitter most affected is acetylcholine 

£ B The site of action of n-3 PUFAs within the neuron is the nucleus

£ C n-3 PUFAs modulate neurochemical pathways controlling locomotor activity, depressive-like states, and responses to reward

£ D n-3 PUFA intake is not associated with blood n-3 PUFA content 

3. Based on the above review, which of the following statements about the role of brain-derived neurotrophic factor 
(BDNF) in bipolar disorder is most likely correct? 

£ A BDNF is a neurotrophic factor involved in neurogenesis and neuroplasticity

£ B Antibipolar medications have not been shown to affect neurotrophin levels

£ C Many studies have shown an association between BDNF and n-3 PUFAs in bipolar patients

£ D Dietary nutrients have not been shown to affect BDNF

2. Your patient is a 34-year-old white female with bipolar disorder. Based on the above review, which of the 
following statements are you most likely to tell her about the role of n-3 PUFAs in managing her condition?

£ A n-3 PUFAs are most effective to treat manic symptoms 

£ B Adverse effects of n-3 PUFAs preclude their routine use

£ C Long-term, well-designed, randomized, controlled trials (RCTs) have proven that a specific dose regimen and duration of n-3 
PUFA supplementation is an effective stand-alone treatment for bipolar depression

£ D Preclinical and clinical evidence suggests a role for n-3 PUFAs as adjunctive treatment for bipolar depression






